

High performance sustainable bio-based packaging with tailored end of life and upcycled secondary use PRESERVE

This project is funded by the Horizon 2020 Framework Programme of the European Union under Grant Agreement Number **952983**

Preserve: Main figures

• 4 years (January 2021- Dec 2024)

Funding from EC Horizon 2020 programme under the topic: CE-BIOTEC-09-2020 Upcycling Bio Plastics of food and drinks packaging.

• 23 partners including 7 research organisations, partners along the circular supply & value chain with large end users and the largest bioplastics producer/users' association.

Project introduction

Why Preserve is needed?

Europe is far from its targets in terms of CO₂ footprint (neutrality by 2050) and circular economy (all plastic packaging recyclable by 2030)!

- High performance bio-based materials need to be developed and produced.
- Their recycling approaches need to be better established and in motion.
- Biodegradability of biopolymers applications to be expanded to more environments.

Preserve objectives

- PRESERVE biomaterials upcycling strategies include self-reinforcement, eBeam-assisted material enhancement, removable coatings & adhesives.
- They will be fit for tailored EoL scenarios including reprocessing via self-reinforcement or after delamination, enzymatic recycling or enzyme-stimulated biodegradation.
- PRESERVE circular renewably sourced packaging solutions and derived upcycled packaging applications will optimally preserve the packed good but also our finite material and energy resources and the environment.

Technical activities to reach Preserve solutions

Technologies applied in PRESERVE :

- Protein- based coatings and adhesives.
- PHA coatings.
- eBeam treatment of biopolymers.
- Use of biopolymers for personal care and transport packaging.
- Reinforcement of bi-components biopolymers.
- Delamination.
- Enzymes-based recycling.

Bio-based packaging for food & drinks (Primary upcycled bioplastics)

Secondary raw material upcycling into cosmetic packaging, textiles & composites

PRESERVE technical challenges

Development of PHA fermentation protocols and coatings

- amount vs expected time frame → fall back to commercially available grades of PHA for initial trials
- · Delays in technical work needed to be anticipated
- Use of consortium resources and connections to mitigate delays, e.g. support from partners facilities or mediate industry contacts
- Potentially lot of variation in the performance and quality of newly developed material
- Optimization of coating formulations for minimal material quantity, e.g. use of blends

Metallization of protein coating for barrier improvement

- difficulties expected → metallization performed in vacuum (PVD) vs water content in coating ⇒ alternative methods considered
- preliminary results positive, less defects found than expected
- barrier measurements verified "optical" results

Contacts

THANK YOU FOR YOUR ATTENTION

Hochschule Albstadt-Sigmaringen Albstadt-Sigmaringen Un Dr. Kristina Eissenberger ASU – Scientific Coord.

Albstadt-Sigmaringen University Email: eissenberger@hs-albsig.de

Max Sturm ASU – Scientific Coord. Email: <u>sturm@hs-albsig.de</u>

Dr. Aldo R. Reyes IRIS – Project Coordinator Email: <u>aramirez@iris-eng.com</u>

This project is funded by the Horizon 2020 Framework Programme of the European Union under Grant Agreement Number 952983