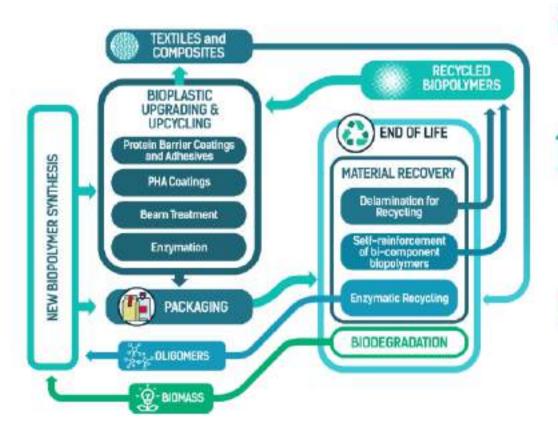


Finish coatings to reduce microplastics release from recycled textiles


PRESERVE: High performance sustainable bio-based packaging with tailored end of life and upcycled secondary use

- PRESERVE EU-Project
- ITENE and its role in PRESERVE
- Finish coatings to reduce microplastics
- Scale up and validation

PRESERVE EU-Project

Enhance bio-based packaging properties that currently limit the application of bioplastics

Develop upcycling technologies of plastics for food, personal care and transport packaging applications ensuring that microplastics are avoided.

Develop novel standards and certification schemes applicable to packaging materials made from recyclable and biodegradable bioplastic.

Finish coatings to reduce microplastics release from recycled textiles

PRESERVE EU-Project partners

- PRESERVE EU-Project
- ITENE and its role in PRESERVE
- Finish coatings to reduce microplastics
- Scale up and validation

ITENE and its role in PRESERVE

Packaging, Transport and Logistics Research Center

+180 professionals

+120 researchers and technicians in R&D&i

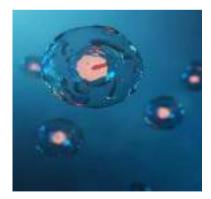
+30 professionals promoting innovation projects with companies


+60% with a master's degree or doctorate in his or her field of specialisation

ITENE and its role in PRESERVE

We generate knowledge and technology to build together a safer and more sustainable future through four main areas of work

SAFETY AND ENVIRONMENTAL MONITORING TECHNOLOGIES



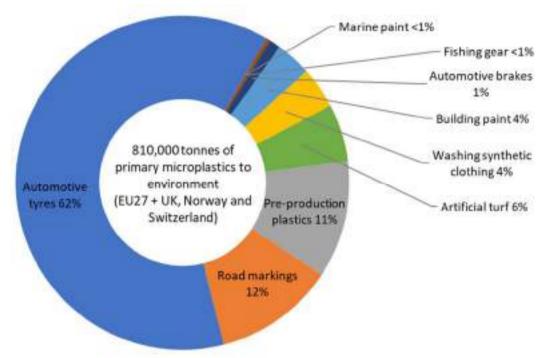
MOBILITY

ITENE and its role in PRESERVE

FINISH COATING TO REDUCE MICROPLASTICS RELEASE

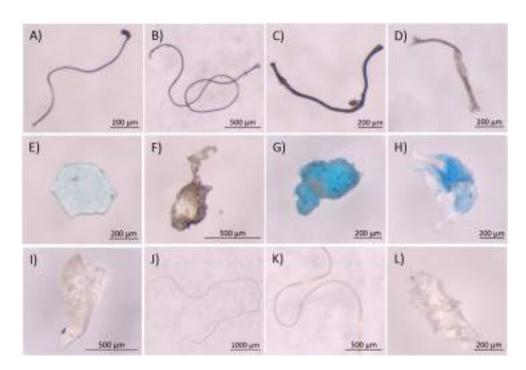
SAFE BY DESIGN (SbD)

FOOD SAFETY ANALYSIS



EVALUATION OF CIRCULARITY

- PRESERVE EU-Project
- ITENE and its role in PRESERVE
- Finish coatings to reduce microplastics
- Scale up and validation



The Problem

Primary microplastics emissions to water, soil and waste management (estimated yearly emissions)

Source: Source: ETC Circular economy and resource use

Typical appearance of different microplastics

(A-E) Polyester, (F-I) polyethylene, (J-K) polyamide and (L) polypropylene.

Source: Lares, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology Water Research, 2018

PRESERVE approach

Selection of representative nonwoven substrates

Selection of biobased formulations as finish coatings

- PLA
- Polysaccharides
- Biobased PU

•••

Application

Characterization

Abrasion

resistance

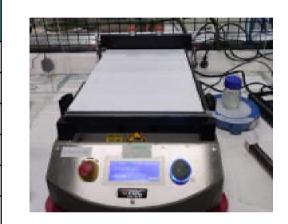
Baker, wire bar applicator

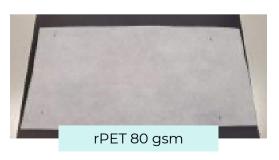
Dip coating

Coating fastness UNE-EN ISO 105-C06:201

Fibre release – linting test

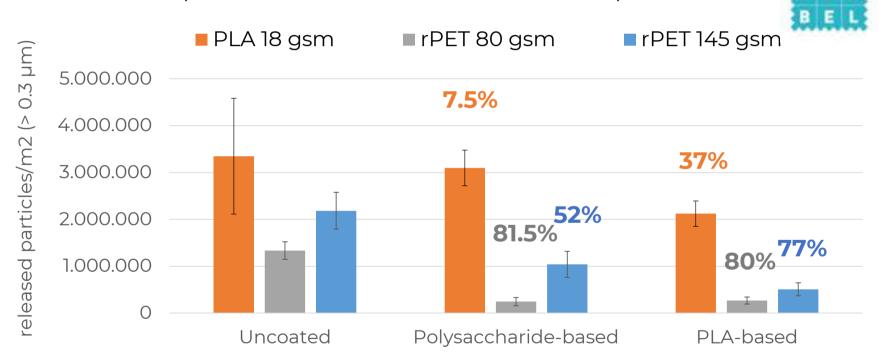
Ecotoxicology in vitro tests


Mesocosm


Selection and application of finish coatings

SUBSTRATE	FINISH COATING	SOLID CONTENT(%)	VISCOSITY (s) Ford cup 4	DRY WEIGHT (g/m2)
PLA 18 gsm	PLA-based	4-5%	13.42	3.50 ± 0.25
PLA 18 gsm	Polysaccharide-based	1-1.5%	49.72	2.83 ± 0.15
rPET 80 gsm	PLA-based	4-5%	13.42	11.58 ± 0.87
rPET 80 gsm	Polysaccharide-based	1-1.5%	49.72	5.67 ± 0.46
rPET 145 gsm	PLA-based	4-5%	13.42	7.53 ± 0.59
rPET 145 gsm	Polysaccharide-based	1-1.5%	49.72	5.33 ± 0.40

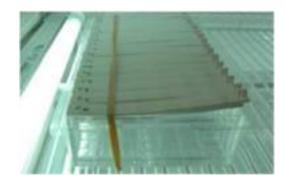
PLA-based finish coating



Characterization of finish coatings – Linting test

Release particles > 0.3 mm - % reduction of microplastics release

✓ All coatings passed abrasion resistance and colour fastness tests



Characterization of finish coatings – Ecotoxicology

SUBSTRATE	FINISH COATING	DAPHNIA IN ALGAE IN VITRO TEST		MESOCOSM	
PLA 18 gsm	PLA-based	Non-Toxic	Non-Toxic	Non-Toxic	
PLA 18 gsm	Polysaccharide-based	Non-Toxic	Non-Toxic	Non-Toxic	
rPET 80 gsm	PLA-based	Non-Toxic	Non-Toxic	Non-Toxic	
rPET 80 gsm	Polysaccharide-based	Non-Toxic	Non-Toxic	Non-Toxic	
rPET 145 gsm	PLA-based	Non-Toxic	Non-Toxic	Non-Toxic	
rPET 145 gsm	Polysaccharide-based	Toxic	Non-Toxic	Non-prioritized	

In vitro test with Daphnia

In vitro test with Algae

Mesocosm test

- PRESERVE EU-Project
- ITENE and its role in PRESERVE
- Finish coatings to reduce microplastics
- Scale up and validation

Scale up and validation

Selection of coatings after lab scale development

SUBSTRATE	FINISH COATING	DRY WEIGHT (g/m2)	% REDUCTION OF MICROPLASTICS RELEASE	DAPHNIA IN VITRO TEST	ALGAE IN VITRO TEST	MESOCOSM
PLA 18 gsm	PLA-based	3.50 ± 0.25	37%	Non-Toxic	Non-Toxic	Non-Toxic
PLA 18 gsm	Polysaccharide-based	2.83 ± 0.15	7.5%	Non-Toxic	Non-Toxic	Non-Toxic
rPET 80 gsm	PLA-based	11.58 ± 0.87	80%	Non-Toxic	Non-Toxic	Non-Toxic
rPET 80 gsm	Polysaccharide-based	5.67 ± 0.46	81.5%	Non-Toxic	Non-Toxic	Non-Toxic
rPET 145 gsm	PLA-based	7.53 ± 0.59	77%	Non-Toxic	Non-Toxic	Non-Toxic
rPET 145 gsm	Polysaccharide-based	5.33 ± 0.40	52%	Toxic	Non-Toxic	Non-prioritized

Scale up and validation

rPET 145 gsm - PLA-based finish coating

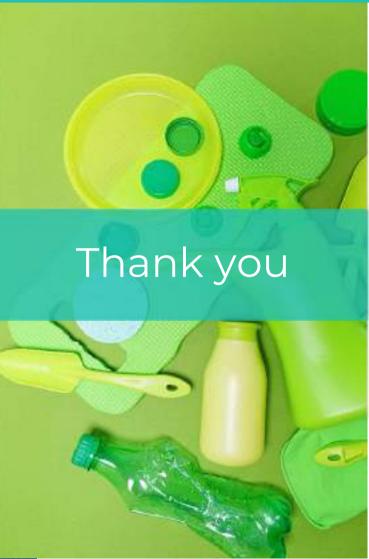
All coatings passed abrasion resistance and colour fastness tests (*) %Microplastics release reduction - Particles $>0.3 \mu m (\#/m2)$

SCALE	SUBSTRATE	FINISH COATING	DRY WEIGHT (G/M2)	% REDUCTION OF MICROPLASTICS RELEASE (*)	DAPHNIA IN VITRO TEST	ALGAE IN VITRO TEST	MESOCOSM
LAB	rPET 145 gsm	PLA-based	7.53	77%	Non-Toxic	Non-Toxic	Non-Toxic
PILOT	rPET 145 gsm	PLA-based	5.60	88%	Non-Toxic	Non-Toxic	Non-Toxic

- Viscosity Ford cup n°4: 14
- Gravure application:
 - ✓ Anilox: 59 LCM (19 cm 3 /m 2).
 - ✓ Drying temperature: 1st oven 60°C 2nd oven 30°C.
 - ✓ Speed: ≈ 8 m/min.

Scale up and validation

Upcoming tasks: PLA-based finish coating – rPLA shopping bag validation


Nonwoven based on r-PLA from PRESERVE activities

Non-woven shopping bag target demonstrator

Application and characterization of coated shopping bag

PRESERVE @

frame paintings, Award of different

